
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONVEX IS BACK:
SOLVING BELIEF MDPS VIA CONVEXITY-INFORMED
DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel method for Deep Reinforcement Learning (DRL), incorpo-
rating the convex property of the value function over the belief space in Partially
Observable Markov Decision Processes (POMDPs). We introduce hard- and soft-
enforced convexity as two different approaches, and compare their performance
against standard DRL on two well-known POMDP environments, namely the
Tiger and FieldVisionRockSample problems. Our findings show that including
the convexity feature can substantially increase performance of the agents, as well
as increase robustness over the hyperparameter space, especially when testing on
out-of-distribution domains.

1 INTRODUCTION

Markov Decision Processes (MDPs) have become the standard formalism for solving sequential
decision making problems (Van Otterlo & Wiering, 2012). For applications in which perfect ob-
servability cannot be assumed, MDPs can be extended to model the probabilistic decision process as
a Partially Observable MDP (POMDP), which provides an efficient framework for optimal decision
making under uncertainty (Kochenderfer, 2015; Kaelbling et al., 1998; Shani et al., 2013; Braziunas,
2003; Walraven & Spaan, 2019; Oliehoek et al., 2008; Cassandra et al., 1994).

Classical dynamic programming (DP) and reinforcement learning RL are the two established solu-
tion methods for MDP and POMDPs. RL approaches are used to overcome the curse of dimension-
ality of DP methods, and additionally do not require a model of the environment (Kochenderfer,
2015). Neural network (NN) based deep RL (DRL) applied to MDPs has been particularly success-
ful, even in high dimensional problem settings (e.g., Mnih et al., 2013; 2015; Silver et al., 2016;
2018). Solving POMDPs is a more difficult task, but one approach is to directly handle the noisy
observation-action history (or a variant thereof) (Koutas et al., 2024; Hettegger et al., 2023; Arcieri
et al., 2023). In cases, where no environment model is available, this is the only option. If one
has an environment model, then beliefs, i.e., a probability distribution over all system states, can
be computed. Using beliefs can be computationally beneficial (Arcieri et al., 2023; Koutas et al.,
2024); however, most current approaches do not use DRL with beliefs. In this work, we propose
to extend belief-based DRL solutions for POMDPs, by taking into account the theoretical property
that the optimal value function is convex over the belief space. We hypothesize that introducing this
informative property in the training process enables faster learning, and leads to better performance
in out-of-distribution (OOD) domains.

We propose two approaches for convexity-enforcement of the value function in the training process,
namely soft-enforced and hard-enforced convexity. The performance of convexity-informed DRL
is examined for both convexity approaches applied to the Dueling Q-Network (Wang et al., 2016)
value-based architecture. Two benchmarks are used for performance comparison, which are the
classic Tiger (Kaelbling et al., 1998) and FieldVisionRockSample (FVRS) (Ross et al., 2007) prob-
lems. We show that when trained with the convexity modification, the involved NNs have stronger
generalization performance compared to the standard training schedule and, in some cases, better
training performance.

Related work
Learning convex functions has a rich history in machine learning. However, the techniques devel-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

oped in literature deal with explicitly defined target functions, e.g., including Karush-Kuhn-Tucker
conditions of quadratic programs as differentiable layers Amos & Kolter (2017), log-likelihoods
in conditional random fields Zheng et al. (2015), or energy functions in structured prediction en-
ergy networks Belanger & McCallum (2016). These methods are not applicable to DRL, where the
value function is implicitly defined through the Bellman equation, and are thus not similar to our
contribution.

Regarding hard-enforced convex NNs for MDP problems, the closest work to this paper is a com-
bination of Amos et al. (Amos et al., 2017) and Sivaprasad et al. (Sivaprasad et al., 2021). Amos
et al. (Amos et al., 2017) introduce fully and partially input convex neural networks, where the
architectures include required skip connections at every layer. The focus of their work lies more on
performing inference on the final convex NN to find the optimal input values. Their reference to the
application on DRL focuses merely on perfectly observable and continuous action problems. They
represent the negative Q-function with an input convex NN, and subsequently select the optimal ac-
tion as a convex optimization problem over the NN output. However, they do not consider partially
observable environments, as is the focus of this work. Sivaprasad et al. (Sivaprasad et al., 2021) de-
fine conditions to achieve input-output convexity with fully connected NNs without the need for skip
connections, and convolutional architectures; however, they do not consider DRL implementations.

Regarding soft-enforcement of convexity in NNs for MDPs or POMDPs, we are not aware of any
related work.

2 BELIEF MDP

Markov Decision Processes (MDP) provide an efficient framework for finding optimal solutions
in sequential decision making problems, where the environment E is stochastic, the consequence
of the agent’s actions is probabilistic, and the state of the environment is known (Puterman, 2014).
Partially observable MDPs (POMDPs) provide a natural extension, where the true environment state
is not perfectly known; instead the agent receives imperfect observations (Kochenderfer, 2015). The
POMDP can be formulated as an MDP by replacing the system states st ∈ S with the corresponding
belief b(st) = p(st | o1:t, a1:t−1), where ot ∈ O and at ∈ A denote the received observation
and action performed by the agent, respectively. As new information is available to the agent,
the new belief states can be obtained with Bayesian updating (Kochenderfer, 2015; Andriotis &
Papakonstantinou, 2019):

b(st+1) = p(st+1 | ot+1, at, bt)

=
O (ot+1 | st+1, at)

p(ot+1|bt, at)
∑
st∈S

T (st+1 | st, at) b(st), (1)

where O and T represent the observation and state transition probabilities, respectively,
p(ot+1|bt, at) is the normalizing constant, and the belief vector bt of length |S| represents the col-
lection of beliefs b(st) ∀s ∈ S (Andriotis & Papakonstantinou, 2019).

Based on the chosen action and the underlying true state of the environment, the agent receives a
reward rt ∈ R determined by the reward function r(st, at), and the expected reward in a certain be-
lief state can be obtained by r(bt, at) =

∑
st∈S r(st, at)b(st). The decision-making rule, mapping

beliefs to actions, is called policy π(bt)
1. The total expected discounted reward, or value function,

V π(bt), starting from b at time t until the horizon h under the policy π is defined as (Walraven &
Spaan, 2019; Andriotis & Papakonstantinou, 2019):

V π(bt) = Esk∼T,ak∼π,ok∼O

[
h∑

k=t

γk−tr(bk, ak)

]
, (2)

where γ < 1 defines a discount factor. Similarly to Equation 2, one can define an action-value
function, Qπ(bt, at), which defines the value of taking action a at belief b at time t until the horizon
h under the policy π:

Qπ(bt, at) = Esk∼T,ak∼π,ok∼O

[
h∑

k=t

γk−tr(bk, ak)

∣∣∣∣ at
]
. (3)

1We limit this work to deterministic policies, but an extension to stochastic policies is possible

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The relationship between Equations 2 and 3 is V π(bt) = Qπ(bt, π(bt)). Having the Q-values, the
agent’s policy can be easily extracted by:

π(bt) = argmax
at∈A

Qπ(bt, at). (4)

The goal of the agent is to find the policy which maximizes the expected sum of discounted rewards.
This optimal policy π∗ maximizes the value and action-values at every time t:

V ∗(bt) := V π(bt)|π=π∗ = max
π

V π(bt) (5)

Q∗(bt, at) := Qπ(bt, at)|π=π∗ = max
π

Qπ(bt, at), (6)

where Q∗ satisfies the recursive Bellman optimality condition (Cassandra et al., 1994):

Q∗(bt, at) = r(bt, at) + γ
∑

bt+1∈B
p(bt+1|bt, at) max

at+1∈A
Q∗(bt+1, at+1). (7)

The focus of this work revolves around an important property of the optimal POMDP value function,
namely that it should be convex over the belief space (Kochenderfer, 2015). The different methods
of enforcing this property are discussed in Section 4 and the application of the approaches to the
Dueling architecture is discussed in Section 5.1.

3 DEEP REINFORCEMENT LEARNING

One can use the recursive formulation in Equation 7 to find the function Q∗, from which the op-
timal policy can then be extracted. Dynamic programming variants, such as, e.g., value or policy
iteration, perform the optimization by iterating over all possible combinations of (belief) states, ac-
tions and observations (Kochenderfer, 2015). However, due to the super-exponential growth in the
value function complexity (Hauskrecht, 2000), this approach is not feasible for larger state and ac-
tion spaces. By contrast, Neural Networks as universal function approximators (Hanin, 2019) have
proven to be effective even in large state and action spaces, which has motivated their use for ap-
proximating V, Q, or π, in what is known as Deep Reinforcement Learning (DRL) (e.g., Andriotis
& Papakonstantinou, 2019; Vinyals et al., 2019).

One of the most prominent architectures for DRL are Deep Q-Networks (DQNs) (Mnih et al., 2013),
where the recursive Equation 7 is reformulated into the temporal difference (TD) mean-squared error
(MSE) loss function:

MSEt =
1

nt

nt∑
i=1

∣∣∣y(i) − ỹ(i)
∣∣∣2 (8)

where y(i) denotes an output sample of the NN and ˜ always denotes the counterpart of the target
NN, whose weights get updated periodically (Mnih et al., 2015):

y(i) = Q(b
(i)
t , a

(i)
t | θ) (9)

ỹ(i) = r
(i)
t + γ max

a
(i)
t+1∈A

Q̃(b
(i)
t+1, a

(i)
t+1 | θ̃). (10)

Note that the Q-values in Equations 9 and 10 are DRL approximations of the optimal Q-function
in Equation 6, and the TD-MSE in Equation 8 is a sample-based approximation of the Bellman
condition in Equation 7. The assumption is that, given enough samples and training, the DRL
approximation should converge to the optimal solution.

4 CONVEX NEURAL NETWORKS

4.1 CONVEXITY CONDITIONS FOR MULTI-DIMENSIONAL FUNCTIONS

A function f : Rn −→ R is convex if its domain is a convex set and for all u,v in its domain, and
all t ∈ [0, 1], we have (Ahmadi & Hall, 2016)

f(tu+ (1− t)v) ≤ tf(u) + (1− t)f(v) (11)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

If f is differentiable, one can define an alternative condition of convexity, which is equivalent to
Equation 11 (Ahmadi & Hall, 2016):

f(u) +∇uf(u)
T (v − u) ≤ f(v), for all u,v ∈ dom(f). (12)

If f is twice differentiable, the one can define yet another condition of convexity which is equivalent
to Equations 11 and 12 (Ahmadi & Hall, 2016):

0 ⪯ H(f)(u) = ∇2
uf(u), for all u ∈ dom(f), (13)

i.e., the Hessian matrix H(f)(u) must be positive semi-definite. Equation 11 defines convexity in
terms of the function value at different points, whereas Equations 12 and 13 define convexity via the
first and second derivatives.

4.2 HARD-ENFORCED CONVEXITY

The first obvious choice to satisfy convexity in the value function is to use an NN architecture which
guarantees convexity. Considering a multi-layer perceptron of k layers, where h(l)

i denotes the i−th
neuron output in the l−th layer, then for an input x ∈ Rd, h(l)

i is defined as (Sivaprasad et al., 2021):

h
(l)
i = ϕ

∑
j

W
(l)
i,j h

l−1
j + b

(l)
i

 , (14)

with weights W
(l)
i,j , bias b

(l)
i and activation function ϕ(x). Further, h(0)

j = xj(j = 1, . . . , d) and

h
(k+1)
j = yj (jth NN output). Only two conditions are needed to ensure convexity of the final output

y with respect to the input x, namely (Amos et al., 2017; Sivaprasad et al., 2021):

i) 0 ≤ W
(2:k+1)
i,j ,

ii) ϕ is convex and a non-decreasing function.

Condition ii) can be achieved by using, e.g., Leaky Rectified Linear Unit (LReLU) (Maas et al.,
2013), Parametric ReLU (PReLU) (He et al., 2015) or Exponential LU (ELU) (Clevert et al., 2015)
activation functions.

Condition i) needs to be enforced during the training process, e.g., by clipping negative weights to
zero, taking absolute of weights, exponentiation of negative weights, or shifting negative weights
after each iteration (Sivaprasad et al., 2021). As this enforcement from outside interferes with the
weight updates, and hence potentially hinders training, we also investigate the approach of soft-
enforced convexity. Note that other, more complex approaches exist to enforce convexity, e.g., by
representing weights as separate NN layers with absolute activation functions (Rashid et al., 2020).
However, this would change the underlying architecture and complicate comparability between the
approaches, which is why other enforcement options are left for future research.

4.3 SOFT-ENFORCED CONVEXITY

Soft-enforced convexity mimics the idea of soft-enforced differential equations in Physics-Informed
Neural Networks (PINNs) (Raissi et al., 2019). The core idea is to add a second term to the tem-
poral loss function in Equation 8, which penalizes deviations of the target function from one of the
convexity criteria outlined in Section 4.1. Suppose we use the MSE loss function also for the second
term, then the total MSE loss function is:

MSE = MSEt + c ·MSEc, (15)
where the constant c defines the relative weight of the TD- and convexity loss terms.

5 METHODOLOGY

5.1 CONVEXITY-INFORMED DRL

The NN architecture used throughout this work is the Dueling architecture (Wang et al., 2016)
depicted in Figure 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Dueling network architecture, with the belief input (black), dense layers (gray), value
stream (cyan), advantage stream (green) and Q-value output (red). Arrows indicate dense weights
and the brown lines indicate computation without weights; adapted from (Wang et al., 2016).

Hard-enforcement of the value-convexity with respect to the belief input is performed by adjusting
the weights according to condition i) in Section 4.2 in the shared layers (gray), as well as the value
stream (cyan) in Figure 1. Condition ii) in Section 4.2 is met by an appropriate choice of the
activation function, which is kept identical for all layers.

Soft-enforcement of the value-convexity is performed by adding a second loss term according to
Equation 15. Depending on the choice of the convexity criterion, namely point-based (p) in Equa-
tion 11, or gradient-based (g) in Equation 12, MSEc takes the form of:

MSEp
c =

1

nc

nc∑
i=1

max
{
0, f(t(i)u(i) + (1− t(i))v(i))− t(i)f(u(i))− (1− t(i))f(v(i))

}2

(16)

MSEg
c =

1

nc

nc∑
i=1

max
{
0, f(u(i)) +∇uf(u

(i))T (u(i) − v(i))− f(v(i))
}2

. (17)

The hessian-based condition in Equation 13 cannot be translated into a loss function in a straight-
forward manner. A matrix M is positive semi-definite (psd) if

xTMx ≥ 0 ∀x ∈ Rn. (18)

For 1D inputs, this is not a problem and the condition reduces to d2

du2 f(u) ≥ 0 and the convex loss
takes the form of

MSEh,1D
c =

1

nc

nc∑
i=1

max

{
0,− d2

du(i)2
f(ui)

}2

. (19)

By contrast, for multidimensional inputs, Equation 18 can be checked in a sample based manner:

MSEh,nD
c =

1

nc

nc∑
i=1

1

npsd

npsd∑
j=1

max
{
0,−x(j)TH(f)(u(i))x(j)

}2

. (20)

u(i) and v(i) in Equations 16, 17, 19 and 20 denote points i = 1, ..., nc sampled from the belief
space, for which the respective convexity condition is checked; x(j), j = 1, ..., npsd denote points
sampled from Rn for which the psd condition in Equation 18 checked.

Once the respective soft enforcement method is chosen, belief points b(i) (corresponding to u(i)) are
sampled from the problem-specific belief space and, together with other inputs, propagated through
the network to obtain their values V (b(i)) (corresponding to f(u(i))). In this work, we employ the
Dueling architecture, hence the values can be obtained by propagation through the shared layers
(gray) and subsequently through the value stream (cyan) of the network in Figure 1.

5.2 NUMERICAL INVESTIGATIONS

With numerical experiments, we test if enforcing convexity in the value function can improve the
performance of DRL. Specifically, we test the following two hypotheses:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

H1: Enforcing convexity enables the DRL agent to learn faster due to restriction of the search space.

H2: Convexity-informed DRL performs better in out-of-distribution domains due to improved ex-
trapolation of the value function.

The two hypotheses are tested with experiments on two classic problems, namely the Tiger (Kael-
bling et al., 1998) and the FieldVisionRockSample (FVRS) (Ross et al., 2007) environments. De-
tailed descriptions of these problems are given in Sections C and D.

To test H1, we train the DRL agent with and without enforcing convexity for a fixed number of
training steps. We then compare the performance of the individual agents.

To test H2, we evaluate the performance of the agents for belief points which are not included in
the training distribution. We achieve this by testing on observation functions which differ from the
one used to train the agent. For the Tiger problem, we simply change the constant Tiger observation
accuracy. For FVRS, the observation accuracy pobs for a rock depends on its Euclidian distance d to
the agent. The default (def) observation function is given as pdefobs (d) = 0.5 + 2−1−d/d0 , where the
constant d0 = (n− 1)

√
2/4 is chosen depending on the grid size n. To evaluate the agent on OOD

data, we define the heaviside (heavi) function pheaviobs (d) = 1 for d ≤ d0 else 0.5, where d0 = 1.
Furthermore, we also define a set of constant (const) observation functions pconstobs (d) = c, which do
not depend on the distance between rock and agent. We use c ∈ {0.5, 0.6, ..., 1.0}.

To allow for a fair comparison between the DRL with and without enforcing convexity we fix the
hyperparameter optimization procedure beforehand. This prevents bias inflicted during the opti-
mization (e.g., amount of time invested, number of samples, amount of steps). The detailed proce-
dure used is reported in Section E. After the hyperparameter search is conducted, we perform two
separate investigations. Firstly, we evaluate the performance of each method over all hyperparame-
ter samples, yielding a rough estimate of the robustness/sensitivity of each method with respect to
changing hyperparameters. This approach is not customary in Machine Learning, which is why the
corresponding results are only reported in Section B. Secondly, we take the best hyperparameters
of each search, and evaluate them over a certain number of runs. The results of this conventional
approach are reported in the main text in Section 6.

The final policy of each agent is evaluated with a Monte Carlo (MC) approximation of the expected
sum of discounted rewards ŝr. To evaluate the performance of each method, we employ boxplots,
comprising the median, interquartile range, and maximum performance, which allows a more com-
plete interpretation of the obtained results.

6 RESULTS

6.1 COMPUTATION TIME

All computations were performed on an Nvidia Tesla V100 GPU with 16GB RAM. For the Tiger
problem, training for 5,000 steps and evaluating the policy with 2 · 105 MC samples took around 5
minutes. For FVRS, training for 50,000 steps and evaluating the policy with 104 MC samples took
approximately 60 minutes.

6.2 TIGER

We test the Tiger problem for all versions of enforced convexity (hard, point, grad and hess) as well
as for the standard approach without enforced convexity.

A visualization of the convexity violation of the standard DRL approach, as well as the correspond-
ing value function correction of our proposed methods is shown in Section B.1.

We perform a hyperparameter search for all convexity methods for various observation accuracies
pobs = {0.6, 0.8, 0.9, 1.0}. The evaluation of our hypotheses over the whole hyperparameter search
is outlined in Section B.1.

The test of H1 for the best hyperparameters yields no difference between the standard DRL approach
and our proposed methods. This is due to the simplicity of the problem, where the majority of agents

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

finds the optimal policy in the given amount of steps; thus, the mean performance over multiple seeds
is close to the optimal performance with only little variation.

To test H2 for the best hyperparameters, we train the agents on a specific observation accuracy
and cross-evaluate their performance on different observation accuracies. Since again, the major-
ity of the hyperparameters converge to the optimal solution, we perform the cross-evaluation over
all optimal agents. We observe that for agents trained on pobs = {0.6, 0.8, 0.9} there was no no-
ticeable difference in the cross-evaluation performance between the individual convexity methods.
Our explanation for this is that the optimal policy is characterized by two transition points from the
action ’listen’ to ’open-left’/’open-right’. Since these transition points lie very close to each other
for pobs ∈ (0.5, 1.0) the methods do not have to perform a large extrapolation, which leads to al-
most identical results. For pobs = 1.0, however, the agent receives only the belief points b = 0.5
and b = 1.0 during training; thus, the agent does not know the location of the policy transition.
For this case, the results are shown in Figure 2, where the performance on the originally trained
observation accuracy is the same for all agents (cf. H1), but the performance on {0.6, 0.8, 0.9}, in
a distributional sense, is noticeably worse for the plain DRL approach compared to all convexity-
enforced methods. This is reflected by lower medians (blue lines) and/or worse interquartile ranges.
This shows that a well-behaved extrapolation of the value function can lead to better performance
in out-of-distribution domains. We note that the max over all optimal agents is still the same for all
methods. We suspect that this is again due to the simplicity of the Tiger problem.

Figure 2: Boxplots (color-coded) over all optimal agents of a hyperparameter search with 200 runs
for each convexity method. An optimal agent is one which has reached the optimal policy in the
given amount of training steps, and the number of optimal agents was for grad: 178, hard: 68, hess:
69, None: 193, point: 183. The agents have been trained on pobs = 1.0 and cross-evaluated on
pobs = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} with 105 MC samples. Each boxplot includes the median as
a blue horizontal line, interquartile range (IQR) as an opaque colored box, as well as the 1.5·IQR
distances from the respective quartiles as whiskers; the maximum achieved value is marked with a
colored hollow circle, other outliers are not visualized to avoid cluttering.

6.3 FVRS

For FVRS, we do not consider the hard-enforced approach, because the value function is convex
with regard to the belief inputs but not with regard to the position inputs. However, enforcing
convexity of the neural network for only a subset of the inputs is not straightforward, hence we
choose to leave this for further research. Moreover, we also do not consider the hessian approach
to soft-enforced convexity. Computing second derivatives is simply too time-intensive for larger

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

problems and one would choose other optimization algorithms (e.g., Newton) over gradient descent
if second derivatives were available.

Furthermore, for FVRS we use the LReLU activation functions, as we noticed that during training
when the method converges to a stable policy (e.g., always go left), the weights of the hidden layers
become high and negative. This ensures that the output is always -1 after passing through multiple
ELU layers which yields the same Q-value for every possible combination of inputs. As a result,
the method is stuck in this local minimum. To avoid this saturation, we switch to LReLU activation
functions for the FVRS problem.

Moreover, we do hyperparameter searches for all convexity methods for the default (def) and heavi-
side (heavi) observation functions. We report the performances on the originally trained environment
as well as the cross-evaluations on other observation functions in the same figures. The results over
all samples are reported in Section B.2, whereas the performances of the hyperparameters over 10
runs for are shown in Figures 3 and 4, respectively. When trained on the default setting (Figure
3), both convexity approaches perform better than standard DRL, both on the original and all OOD
domains. On the other hand, when trained on the heaviside observation function, the gradient-based
approach emerges as the single clear winner over all observation functions.

Figure 3: Best agents (color-coded) evaluated for 10 runs for each convexity method. The agents
have been trained on the default observation function and are cross-evaluated on the heaviside
(heavi) and a set of pobs = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} constant observation functions with 104

MC samples. The figure shows the respective reward means (solid horizontal line) as well as ± 1
standard deviation (transparent bars).

7 CONCLUSION AND FUTURE WORK

In this work, we propose to extend DRL by enforcing the belief-convexity of the value function in
the training process. We have shown that convexity-enforced DRL can yield notable improvements
compared to the standard approach, such as better robustness over the hyperparameter space, as
well as better mean performance of the best hyperparameters. Our approach performs particularly
well when trained on edge case problems (pobs = 1.0 for Tiger and pobs = heavi for FVRS) and
applying the policy to the standard problem formulation counterpart. This suggests that a well-
behaved extrapolation of the value function leads to better policies when encountering OOD-data.

Based on the results in this work, we recommend the usage of the gradient-based enforcement, as
it was better or at least equally good compared to the standard and point-based approach in every
investigated setting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Best agents (color-coded) evaluated for 10 runs for each convexity method. The agents
have been trained on the heaviside observation function and are cross-evaluated on the default (def)
and a set of pobs = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} constant observation functions with 104 MC sam-
ples. The figure shows the respective reward means (solid horizontal line) as well as ± 1 standard
deviation (transparent bars).

Several new empirical results are presented in this paper, yet there are still numerous open questions
to be addressed. In particular, the largest performance gains of the convexity-enforced methods
have been observed when training on edge cases, and extrapolating to the standard settings. This
strongly suggests that these methods can improve performance when large extrapolations are needed.
Hence, we anticipate particularly promising future research directions to be for cases where value
extrapolations are required, i.e., in low data regimes, and higher dimensional problems. On the other
hand, sampling-based techniques, as our soft-enforced methods, can face scalability challenges.
Further investigations of the application to high-dimensional belief spaces are needed to fully grasp
the potential of our proposed approaches.

Other potential research directions could be the investigation of convexity-informed DRL using
actor-critic architectures, where the target directly is the value function, or the application of these
methods to continuous-state POMDPs. Further developments of the convexity injection, e.g., heuris-
tics for choosing an optimal value for c in Equation 15, dynamic c adjustments along the lines of
LR-schedules, or including convexity loss every k training steps to speed up the training process,
can potentially lead to further improvements and training stability.

8 REPRODUCIBILITY STATEMENT

For reproducibility, the source code for the environment, agent, as well as the configuration file
containing all relevant parameters is available at the provided website address in the first comment
towards the reviewers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

AA Ahmadi and G Hall. Theory of convex functions. Princeton University, Lecture, 7, 2016.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International conference on machine learning, pp. 136–145. PMLR, 2017.

Brandon Amos, Lei Xu, and J Zico Kolter. Input Convex Neural Networks. In International Con-
ference on Machine Learning, pp. 146–155. PMLR, 2017.

CP Andriotis and KG Papakonstantinou. Managing engineering systems with large state and ac-
tion spaces through deep reinforcement learning. Reliability Engineering & System Safety, 191:
106483, 2019.

Giacomo Arcieri, Cyprien Hoelzl, Oliver Schwery, Daniel Straub, Konstantinos G Papakonstanti-
nou, and Eleni Chatzi. POMDP inference and robust solution via deep reinforcement learning:
An application to railway optimal maintenance. arXiv preprint arXiv:2307.08082, 2023.

David Belanger and Andrew McCallum. Structured Prediction Energy Networks. In International
Conference on Machine Learning, pp. 983–992. PMLR, 2016.

James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization. Journal of
Machine Learning Research, 13(2), 2012.

Darius Braziunas. POMDP solution methods. University of Toronto, 2003.

Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting Optimally in Partially
Observable Stochastic Domains. In AAAI, volume 94, pp. 1023–1028, 1994.

Antony R. Cassandra. pomdp-solve, 2022. URL https://www.pomdp.org/code/. Accessed
08-December-2023.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). arXiv preprint arXiv:1511.07289, 2015.

Michael Hahsler and Hossein Kamalzadeh. POMDP: Introduction to Partially Observable Markov
Decision Processes, 05 2021. URL https://cran.r-project.org/web/packages/
pomdp/vignettes/POMDP.html#the-tiger-problem-example. Accessed 08-
December-2023.

Boris Hanin. Universal Function Approximation by Deep Neural Nets with Bounded Width and
ReLU Activations. Mathematics, 7(10):992, 2019.

Milos Hauskrecht. Value-Function Approximations for Partially Observable Markov Decision Pro-
cesses. Journal of Artificial Intelligence Research, 13:33–94, 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034, 2015.

Daniel Hettegger, Carmen Buliga, Florian Walter, Elizabeth Bismut, Daniel Straub, and Alois Knoll.
Investigation of Inspection and Maintenance Optimization with Deep Reinforcement Learning in
Absence of Belief States. In 14th International Conference on Applications of Statistics and
Probability in Civil Engineering, ICASP14, 2023.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mykel J Kochenderfer. Decision Making Under Uncertainty: Theory and Application. MIT press,
2015.

10

https://www.pomdp.org/code/
https://cran.r-project.org/web/packages/pomdp/vignettes/POMDP.html#the-tiger-problem-example
https://cran.r-project.org/web/packages/pomdp/vignettes/POMDP.html#the-tiger-problem-example

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Daniel Koutas, Elizabeth Bismut, and Daniel Straub. An investigation of belief-free DRL and MCTS
for inspection and maintenance planning. Journal of Infrastructure Preservation and Resilience,
5(1):6, 2024.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier Nonlinearities Improve Neural
Network Acoustic Models. In Proc. ICML, volume 30, pp. 3. Atlanta, GA, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and Approximate Q-value Func-
tions for Decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-Informed Neural Networks: A
Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial
Differential Equations. Journal of Computational Physics, 378:686–707, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Fo-
erster, and Shimon Whiteson. Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence of Adam and Beyond. arXiv
preprint arXiv:1904.09237, 2019.

Stéphane Ross, Brahim Chaib-Draa, et al. AEMS: An Anytime Online Search Algorithm for Ap-
proximate Policy Refinement in Large POMDPs. In IJCAI, pp. 2592–2598, 2007.

Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers. Au-
tonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

Lavanya Shukla. Bayesian Hyperparameter Optimization - A Primer, 11
2023. URL https://wandb.ai/wandb_fc/articles/reports/
Bayesian-Hyperparameter-Optimization-A-Primer--Vmlldzo1NDQyNzcw.
Accessed 15-Dezember-2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140–
1144, 2018.

Sarath Sivaprasad, Ankur Singh, Naresh Manwani, and Vineet Gandhi. The Curious Case of Convex
Neural Networks. In Machine Learning and Knowledge Discovery in Databases. Research Track:
European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings,
Part I 21, pp. 738–754. Springer, 2021.

Trey Smith and Reid Simmons. Heuristic Search Value Iteration for POMDPs. arXiv preprint
arXiv:1207.4166, 2012.

Martijn Van Otterlo and Marco Wiering. Reinforcement Learning and Markov Decision Processes.
In Reinforcement Learning: State-of-the-Art, pp. 3–42. Springer, 2012.

11

https://wandb.ai/wandb_fc/articles/reports/Bayesian-Hyperparameter-Optimization-A-Primer--Vmlldzo1NDQyNzcw
https://wandb.ai/wandb_fc/articles/reports/Bayesian-Hyperparameter-Optimization-A-Primer--Vmlldzo1NDQyNzcw

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Erwin Walraven and Matthijs TJ Spaan. Point-Based Value Iteration for Finite-Horizon POMDPs.
Journal of Artificial Intelligence Research, 65:307–341, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Duel-
ing Network Architectures for Deep Reinforcement Learning. In International Conference on
Machine Learning, pp. 1995–2003. PMLR, 2016.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Da-
long Du, Chang Huang, and Philip HS Torr. Conditional random fields as recurrent neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1529–1537,
2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A CONVEXITY VIOLATION

To check whether the convexity violation of the standard approach is prevalent during training, we
plot the value function of 6 example agents trained on the Tiger problem with pobs = 1.0 in A.1.
Note that not all None-based value functions showed convexity violations, but the majority.

To show that the convexity enforcement approaches proposed in this work mitigate the convexity
violations, we also plot the value function of 6 example agents trained on the same setting, but now
with gradient-based enforcement. The choice for gradient-based enforcement is arbitrary, all other
proposed methods show similar convexity corrections.

(a) None (b) grad

Figure A.1: Tiger value function plot over the belief space for 6 example agents trained without (a)
and with gradient-based convexity enforcement (b) on pobs = 1.0 .

B ROBUSTNESS OVER HYPERPARAMETER SPACE

B.1 TIGER

To test H1 over all hyperparameters, we show their achieved reward distributions for observation
accuracies pobs = {0.6, 0.8, 0.9, 1.0} in Figure B.1. The figure shows that, in a distributional sense,
the performance is significantly worse for the hard-enforced and hessian soft-enforced convexity.
Our explanation for this is that training is harder with these convexity enforcements. For the hard
enforcement, we suspect that the additional adjustment of the weights after the backpropagation
step, which assures that the output of the NN is convex with respect to the input, interferes with the
training and hence it is harder to find the optimal policy. For the hessian enforcement, we suspect
that calculating third order derivatives is not as stable, which results in slower learning.

B.2 FVRS

The results for all agents trained on the default, and cross-evaluated on the heaviside and constant
observation functions, are shown in Figure B.2. The grad- and point-based methods perform better
in all settings compared to the standard approach in terms of their medians and third quartiles (Q3).
Note however, that the point method partially shows high variation, which is reflected by low first
quartiles (Q1). Overall the grad method shows the best performance based on highest Q1 − Q3

(highest maximum performance is investigated in Section 6.3).

Even more pronounced is the difference when more extrapolation capacities are needed, i.e., when
training on the heaviside and evaluating on default and constant observation functions. The results
for this setting are shown in Figure B.3, where the best agents of the grad and point approaches
clearly perform better than the None counterpart, both on the original and OOD domains. There
does not seem to be a clear difference when comparing the medians of point and None; grad however
emerges as the clear best over all observation functions.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure B.1: Boxplots (color-coded) over all agents of a hyperparameter search with 200 runs for
each convexity method trained on pobs = {0.6, 0.8, 0.9, 1.0}, and evaluated with 105 MC samples.
Each boxplot includes the median as a blue horizontal line, interquartile range (IQR) as an opaque
colored box, as well as the 1.5·IQR distances from the respective quartiles as whiskers; the maximum
achieved value is marked with a colored hollow circle, other outliers are not visualized to avoid
cluttering.

Figure B.2: Boxplots (color-coded) over all agents of a hyperparameter search with 150 runs for
each convexity method. The agents have been trained on the default (def) observation function and
are cross-evaluated on the heaviside (heavi) and a set of pobs = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} constant
observation functions with 104 MC samples. Each boxplot includes the median as a blue horizontal
line, interquartile range (IQR) as an opaque colored box, as well as the 1.5·IQR distances from
the respective quartiles as whiskers; the maximum achieved value is marked with a colored hollow
circle, other outliers are not visualized to avoid cluttering.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure B.3: Boxplots (color-coded) over all agents of a hyperparameter search with 150 runs for
each convexity method. The agents have been trained on the heaviside (heavi) observation function
and are cross-evaluated on the default (def) and a set of pobs = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} constant
observation functions with 104 MC samples. Each boxplot includes the median as a blue horizontal
line, interquartile range (IQR) as an opaque colored box, as well as the 1.5·IQR distances from
the respective quartiles as whiskers; the maximum achieved value is marked with a colored hollow
circle, other outliers are not visualized to avoid cluttering.

C TIGER PROBLEM

C.1 TIGER DESCRIPTION

The Tiger problem (Kaelbling et al., 1998) consists of an agent standing in front of two doors.
Behind one of the doors there is a tiger (T), behind the other there is no tiger (T̄), and the agent does
not know where the tiger is. At each timestep the agent can decide whether he wants to open one of
the doors with the actions ’open-right’ / ’open-left’ (OR / OL) or perform a listening (L) action. By
listening, the agent hears the tiger roaring behind its true location with probability pobs ∈ [0.5, 1.0].

Opening the door with the tiger behind yields a reward of r(T) = −100, opening the other door
incurs r(T̄) = 10. Listening on the other hand, costs r(L) = −1. After opening a door, the
environment resets with a new random tiger location.

The environment state of the Tiger problem can be fully described with a scalar value denoting, e.g.,
the belief of the tiger being behind the left door b ∈ [0.0, 1.0]. In general, the optimal policy depends
on the horizon h, i.e., the number of times the game is played. For the special cases of h = 1 and
h → ∞, the optimal policy collapses to a relatively simple one. It consists of listening at every
timestep until the belief that the tiger is at a given door falls below a certain optimal belief threshold
bopt, or the belief surpasses 1− bopt. For h = 1, the associated optimal belief threshold b1opt can be
obtained by considering only the immediate expected rewards. The agent should open the door if
the associated expected reward is higher than the expected reward of listening:

E
[
r(b,OR/L)

]
> E [r(b, L)]

⇐⇒ b(T)r(T) + (1− b(T))r(T̄) > r(L)

⇐⇒ b(T) <
r(L)− r(T̄)

r(T)− r(T̄)
= b1opt.

(21)

With the aforementioned rewards, b1opt = 0.1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table C.1: Optimal Q-values for beliefs bS = 0.5, bL = 1.0, bR = 0.0 and actions L, OL, OR for
horizon h → ∞ and r∗PO given in Equation 26.

L OL OR

bS r∗PO −45 + γr∗PO −45 + γr∗PO

bL r∗PO −100 + γr∗PO 10 + γr∗PO

bR r∗PO 10 + γr∗PO −100 + γr∗PO

For h → ∞, the derivation of the thresholds is generally not trivial, as the discounted expected
reward of future games has to be considered in addition to the immediate reward, and the threshold
depends on the observation accuracy. Thus, we use the pomdp package, which is an R implemen-
tation of the well-known original pomdp-solve developed by Antony Cassandra (Cassandra, 2022;
Hahsler & Kamalzadeh, 2021). Instead of calculating the thresholds, we extract the optimal policy
graphs together with the associated belief points and optimal expected rewards achieved with dis-
count factor γ = 0.9 for the investigated observation accuracy cases. Computing the KL-divergence
of the optimal policy graphs and the agent policies gives a faster way of determining whether the
optimal policy is reached than with extensive MC simulation.

In Sections C.2 and C.3 some special cases resulting from this general optimal policy are outlined,
for which the optimal rewards and Q-values can be calculated analytically.

C.2 UNINFORMATIVE OBSERVATIONS

When pobs = 0.5, listening does not yield an improvement of the initial belief (hence, the explored
belief space reduces to a single point bS = 0.5). Here, the optimal action is to listen at every
timestep and the optimal reward r∗UI and optimal Q-values Q∗(b, ai) depending on the horizon h
and discount factor γ are:

r∗UO = −
h∑

t=0

γt = −1− γh+1

1− γ

h→∞
= − 1

1− γ
(22)

Q∗(b, L) = r∗UO (23)

Q∗(bS , OL) = 0.5 · 10 + 0.5 · (−100)−
h∑

t=1

γt

= −45− γ
1− γh

1− γ

h→∞
= −45− γ

1− γ
(24)

Q∗(bS , OR) = Q∗(bS , OL) (25)

C.3 PERFECT OBSERVATIONS

When pobs = 1.0, listening once directly yields the position of the tiger with certainty. Here, the
optimal policy is to listen first and then to open the door opposite to the perceived roar. The optimal
reward r∗PO and optimal Q-values for belief states bS = 0.5, bL = 1.0, bR = 0.0 depending on the
trajectory until horizon h and discount factor γ are given in Equations 26 and C.1

r∗PO = −1 + 10γ − · · ·+ 10γh = −

h−1
2∑

t=0

γ2t + 10

h−1
2∑

t=0

γ2t+1

= −1− γh+1

1− γ2
+ 10

1− γh+2

1− γ2

h→∞
=

10γ − 1

1− γ2
.

(26)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D FVRS PROBLEM

D.1 FVRS DESCRIPTION

The FieldVisionRockSample (Smith & Simmons, 2012; Ross et al., 2007) problem is defined by
a tuple (n, k), where n defines the width of a square grid and k the number of rocks distributed
randomly in the grid. The state of each rock is either good (GR) or bad (BR). The actions available
to the agent at each timestep are to move north (MN), south (MS), east (ME), west (MW), or to
perform a sampling (C) action. The starting point of the agent is randomly sampled along the west
boundary of the grid, and there is an exit zone situated along the east boundary of the grid.

Upon reaching the exit zone the agent receives the reward rE = 10. When the agent is located in
the same grid cell as a rock, it can sample it. If the rock is good, the agent receives rGR = 10; if
it is bad, the agent receives rBR = −10. Otherwise, performing the sampling action with no rock
present incurs a reward of 0. In addition, we punish the agent if it wants to move out of the grid at the
west, north and south boundary. These illegal moves are associated with a reward of rIM = −10.
Hence overall, in order to maximize the expected sum of discounted rewards, the task of the agent
is to sample good rocks and to reach the exit zone in as few steps as possible. Throughout this work
we use (n, k) = (4, 4).

D.2 BELIEF UPDATE

The standard belief update after on observation is given in Equation 1. Firstly, the dependence of
O on action at can be dropped, since the observations only depend on the state of the rocks and
their distance to the robot. Furthermore, an action does not change the state of the rocks 2, thus the
transition probabilities reduce to T (st+1, st) = δt+1,t, where δt+1,t denotes the Kronecker delta.
Hence, the belief update can be simplified to

b(st+1) ∝ O (ot+1 | st+1) b(st). (27)

D.3 IGNORING ROCKS POLICY

The first obvious stationary policy is if the agent completely ignores the rocks and collects the exit
reward as fast as possible. Thus, the policy consists of choosing the action ”move east” at every
timestep the reward resulting from this policy is

r∗ = γn−1rE . (28)

The optimal Q-values under the policy of only moving east are then independent of the rock positions
as well as the belief about the rock states, i.e., they only depend on the on the position of the agent
relative to the exit zone. To simplify, we can formulate an averaged optimal Q-value Q̃∗(A) =
EB [Q∗(b, A)] by averaging over all grid positions.

Q̃∗(ME) =
γ0rE + γ1rE + · · ·+ γn−1rE

n
=

rE
n

n−1∑
t=0

γt =
1− γn

1− γ

rE
n
. (29)

Likewise, for actions MN, MS, MW we have to take into account the delay of exit reward as
well as potential negative rewards incurred due to illegal moves at the borders. Similarly, for action
C, we have to consider the delay of exit reward as well as the expected reward for performing
action C at the agent’s location. Since, in our case, the rocks are equally likely to be in a good or
a bad state(p(GR) = p(BR)), the rewards for a good and bad rock have the same absolute value
rGR = −rBR, and the reward for performing action C when there is no rock is 0, the overall
expected collection reward is zero:

E [r(C)] = r(C|R)p(R) + r(C|R̄)p(R̄)

=
k

n2
[p(GR)rGR + p(BR)rBR] +

n2 − k

n2
r(C|R̄)

= 0.

(30)

2To be precise, sampling a good rock does change its state to a bad rock; this is however implemented as an
additional step after the belief update and hence can be ignored here

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hence, the averaged optimal Q-values for each action are

Q̃∗(MN) =
rE
n

n∑
t=1

γt +
rIM
n

= γQ̃∗(ME) +
rIM
n

(31)

Q̃∗(MS) = Q̃∗(MN) (32)

Q̃∗(MW) =
rE
n

n+1∑
t=2

γt +
rIM
n

= γ2Q̃∗(ME) +
rIM
n

(33)

Q̃∗(C) = γQ̃∗(ME). (34)

D.4 CONVENIENCE COLLECTION POLICY

Another stable policy with higher reward than completely ignoring the rocks would be to keep
moving towards the exit zone at every timestep. However, if a good rock lies incidentally on the
path of the agent, it is collected. This policy is always better or equal than ignoring the rocks, when
the rewards are selected as

γn−1rE ≤ γnrE + γn−1rGR −→ (1− γ) rE ≤ rGR, (35)

which is guaranteed by the initial setup. To calculate the analytical reward and Q-values resulting
from this policy is not straightforward, but can be easily obtained with Monte Carlo simulation.

E TRAINING SPECIFICATIONS

We first start with a large number of hyperparameters and a broad range (i.e., multiple orders of
magnitude) of possible values. For each convexity method, we then sample this space of possible
hyperparameters with a fixed number of samples, which we call training runs, and let the agents
train for a fixed number of timesteps (no early stopping). The sampling of the hyperparameter space
is conducted via via Bayesian hyperparameter tuning (Shukla, 2023), which empirically finds better
hyperparameters compared to their more prominent counterparts, namely grid and random search
(Bergstra & Bengio, 2012). At the end of each run, we evaluate the policies of the respective agents.
In the general case, we estimate the achieved expected sum of discounted rewards with Monte Carlo
simulation. For the Tiger problem, an optimal solution is available with classical methods; hence, we
can additionally use the Kullback-Leibner divergence to filter for agents which achieved the optimal
policy (e.g., in Figure 2).

Since the agents usually find the optimal solution when trained for a sufficiently large number of
steps, we heavily restrict the number of available steps for each training run. A few training runs
were used for an initial estimate of the speed of convergence and a fraction of that was used for the
cutoff. Based on this small pre-analysis, the maximum number of training steps is chosen as 5,000
and 50,000 for the Tiger and FVRS problems, respectively.

For the Tiger problem, we consider the infinite-horizon stationary policy. With a discount factor of
γ = 0.9, the rollout depth dT was chosen as 150, where the reward’s contribution to the sum of
discounted rewards is in the order of 10−5. On the other hand, for the FVRS problem, we search for
the policy which maximizes the expected rewards over a game instance, i.e., from the starting point
until the robot reaches the end zone. We restrict the maximum rollout depth to dFV RS = n2 · k.
Hence, this defines a limit policy of visiting every grid cell and sampling every rock.

F NEURAL NETWORK SPECIFICATIONS

For this work, we fixed a number of network and optimizer parameters, the specifications can be
found in Tables F.1 and F.2. Unless otherwise specified, we use the PyTorch default values. The
resulting total number of trainable weights for the Tiger and FVRS networks are given as 174 and
32,106, respectively.

On the other hand, a number of parameters are selected to be optimized. We choose the Bayesian
optimization method with an MC approximation of the expected sum of discounted rewards evalu-
ated at the end of each training run as the maximization target. We reduce the learning rate when

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table F.1: Environment-independent fixed network and optimizer parameters

Parameter Tiger/FVRS value

Architecture type Dueling (Wang et al., 2016)
Target update type hard
Target update period 3
Batch size 20
Rollout steps 25
Discount factor γ 0.9
Optimizer Adam (Kingma & Ba, 2014)
AMSGRAD Included (Reddi et al., 2019)
Minimum learning rate 10−4

Initial exploration rate 0.5

Table F.2: Environment-specific fixed network and optimizer parameters

Parameter Tiger FVRS

input nodes 1 3k+2
output nodes 3 5
FC Layer 2 3
FC layer width 10 100
value layers - 1
Lalue layer width - 50
advantage layers - 1
Advantage layer width - 50
Activation function ELU LeakyReLU
Activation func. par. 1 (scale) 0.03 (neg. slope)
Max epochs 5,000 50,000
Max # frames 100,000 1,000,000

the target metric stops improving according to the ReduceLROnPlateau scheduler (LRS). For agent
exploration we employ the ϵ-greedy scheme. The list of optimizable parameters along with their
distributions and environment-specific bounds is given in Table F.3.

Regarding the choice of the weight c in Equation 15, the approach we took was to first train agents
without the convexity loss and then to evaluate their convexity losses with respect to a convexity
measure of choice. c is then chosen such that the TD-MSE and the average convexity MSE loss
are roughly equal. Future work can investigate this topic further, for a more systematic and general
handling of this parameter, potentially providing even better performance enhancements.

Table F.3: Optimizable parameters

Parameter Distribution Tiger bounds FVRS bounds

Initial learning rate log-uniform [e−4, e−1] [e−7, e−3]
Replay buffer size int-uniform [1, 105] [1, 106]
epochs per rollout int-uniform [1, 25] [1, 25]
LRS factor uniform [0.8, 1.0] [0.8, 1.0]
LRS patience int-uniform [1, 104] [1, 5 · 104]
ϵ steps int-uniform [1, 104] [1, 105]
Final ϵ uniform [0.001, 0.5] [0.001, 0.5]

19

	Introduction
	Belief MDP
	Deep Reinforcement Learning
	Convex Neural Networks
	Convexity conditions for multi-dimensional functions
	Hard-enforced convexity
	Soft-enforced convexity

	Methodology
	Convexity-informed DRL
	Numerical investigations

	Results
	Computation time
	Tiger
	FVRS

	Conclusion and future work
	Reproducibility statement
	Convexity violation
	Robustness over hyperparameter space
	Tiger
	FVRS

	Tiger Problem
	Tiger description
	Uninformative observations
	Perfect observations

	FVRS problem
	FVRS description
	Belief update
	Ignoring rocks policy
	Convenience collection policy

	Training specifications
	Neural network specifications

